Dear Teachers,

A huge thank you for engaging your students in Milwaukee Film’s Education Screenings. Your efforts to connect these students to the world of film helps them develop their critical thinking skills, which will serve them for a lifetime.

Zero Gravity follows a middle school teacher and his group of students as they prepare for an upcoming robotics competition. Along the way the students share their hopes and dreams for the future as they become inspired by the world of STEM and robotics. Zero Gravity paints a very realistic picture of what it is like to be on a competitive robotics team. This film is filled with several important lessons about life, teamwork, inclusion, and perseverance that I hope everyone can learn from.

As a STEM educator who runs several competitive robotics teams in the Milwaukee area, this film echoes what I do daily. I am extremely honored and excited to have the opportunity to put together this packet of activities for educators in the Milwaukee Area. The activities that you will find in this packet are just some of the programs that I run with my robotics students every year.

It is my hope that your students become curious about topics like science, robotics, and coding. Only then will they begin to branch out and explore the wide world of STEM. Hopefully one day they will want to work on the first passenger spacecraft to Mars or develop the latest technology in CGI for filmmakers.

We would love to see how your students tackle these activities, and the unique solutions they come up with. You can send evidence of the work you did to integrate the film into your classroom electronically or by mail. This could include: links to online content, Google Drive folders, scanned material, photocopied or original student work concerning the film/film-going experience or even your own anecdotal, narrative accounts. **We should receive this evidence of your integration of the film into your classroom by December 31, 2022.** All of what you send us will help us write and fulfill the grants that allow us to bring these films to you and your students at such a low cost. We may also post some of the best work on our website (with students’ first names and school only) later in the year (if you would prefer that we not share your students’ work publicly, please let us know).

There is an Essay Contest in this packet! Submit writing from your students in response to the standard prompt we offer here by **Friday, December 31, 2022** for consideration. A panel of judges will select the best essay and a runner-up in each grade range to receive a bookstore gift certificate as a prize. See the Essay Contest handout in this packet for more details.
Send student work or evidence via email to Milwaukee Film's Education Manager, Marielle Allschwang, at marielle@mkefilm.org or by mail to:

Milwaukee Film
Attn: Marielle Allschwang, Education Manager
1037 W. McKinley Ave, Suite 200
Milwaukee, WI 53205

Thank you,

Michael Meilicke
STEM Educator, Milwaukee, WI
Curriculum Writer, Milwaukee Film
Zero Gravity Curriculum At-A-Glance: Grades 6-8

Film Reflection: The Wide World of STEM (pre- and post-screening reflection activities)

Students will watch the trailer for Zero Gravity and reflect on what they know about coding and careers in STEM. After watching the film, students will reassess what they thought about coding and explore careers in STEM. At the end of the activity, students will have a better understanding of what career opportunities are available in the world of STEM.

Common Core Standards: CCSS.ELA-LITERACY.RST.6-8.1, CCSS.ELA-LITERACY.RST.6-8.4, CCSS.ELA-LITERACY.RST.6-8.9

Engineering Challenge: Launcher and Catcher

A theme that stands out at the end of the film is the idea of not giving up. Even if you fail, try again! The number one rule in Science and Engineering is to never give up. This activity will challenge students to build two separate devices: a device that can launch a Ping-Pong ball and another device that can catch the ball. However, both devices are to be created out of obscure materials. The goal of the activity is to demonstrate the engineering design process, and more importantly, demonstrate the success that comes with retrying something again after failing the first time.

Next Generation Science Standards: MS-ETS1-1, MS-ETS1-2, MS-ETS1-3
Common Core Standards: CCSS.ELA-LITERACY.RST.6-8.4

Introduction to Coding: Coding a Human

In the film Zero Gravity, students were coding satellites in the international space station. This activity is meant to give an introduction to coding without the use of technology. This type of coding activity is typically referred to as "unplugged" since computers or technology will not be used. In this activity, students will be writing a set of directions (or code) on paper for a person (also referred to as "the robot") to follow to complete a task. This activity is commonly used as an introduction to coding across all grade and skill levels. This activity can be modified to meet the needs of your class.

Next Generation Science Standards: MS-ETS1-1, MS-ETS1-2, MS-ETS1-3
CSTA K12 CS Standards: 2-CS-03, 2-AP-15, 2-AP-17

Applications of Coding: Coding a Video Game in Scratch/mBlock

In the film Zero Gravity, students were tasked with coding satellites in the international space station. While they were testing their code, they ran a simulation to see how their code affected the satellite. We might not be able to code satellites in a simulation, but we can still do something
almost as cool! In this activity, we will be coding a basic jumping video game. Students will code the same game and improve upon it to create something to their liking.

Next Generation Science Standards: MS-ETS1-1, MS-ETS1-2, MS-ETS1-3
Common Core Standards: CCSS.ELA-LITERACY.RST.6-8.4, CCSS.ELA-LITERACY.RST.6-8.3
CSTA K12 CS Standards: 2-CS-03, 2-AP-11, 2-AP-12

Documentary Analysis/Making your own Documentary (2 Parts; Part One: after viewing; Part Two: before or after viewing)
This activity is designed to get students thinking and talking about the content of the film and what they could include in their own documentary if they were a filmmaker.

CC-ELA Literacy Standards: RI.6.1-3, RI.6.6-7, RI.6.10, RI.7.1-3, RI.7.6-7, RI.7.10, RI.8.1-3, RI.8.6-7, RI.8.10, W.6.4, W.6.6-10, W.7.4, W.7.6-10, W.8.4, W.8.6-10, SL.6.1, SL.6.4-6, SL.7.1, SL.7.4-6, SL.8.1, SL.8.4-6, L.6.1-3, L.6.6, L.7.1-3, L.7.6, L.8.1-3, L.8.6
Film Reflection: The Wide World of STEM

About the Activity

Students will watch the trailer for Zero Gravity and reflect on what they know about coding and careers in STEM. After watching the film, students will re-assess what they thought about coding and explore careers in STEM. At the end of the activity, students will have a better understanding of what career opportunities are available in the world of STEM.

Materials

Zero Gravity Trailer

Pre-Film Reflection

Before you watch the film, have the students watch the trailer. Once the students have watched the trailer, have them discuss these questions in small groups or have them individually write out their responses on paper.

1. What do you think this film will be about?
2. Have you ever been interested in coding or robotics? Why or why not?
3. What do you know about STEM? What would someone with a job in the STEM field do?
4. Try to list 3 careers in STEM.
5. Have you ever coded something before? If so, what was it?
6. What do you know about coding? Can you give an example of something that runs off code?

Post-Film Reflection and Exploration

Once the students have watched the film, have them discuss these questions in small groups or have them individually write out their responses on paper.

- What were your thoughts on the film you saw?
- Would you consider joining a robotics competition like Zero Robotics? Why or why not?
- In the film, the students on the team talk about what they wanted to be when they were older. What was one of the careers described in the film?
- Have you ever considered what you wanted to be when you are older? If so, what is it and why?

Once the questions have been answered or discussed, have the students log onto a laptop or a desktop computer and have them research careers in STEM. Use the following outline to help guide student research. Have each student explore careers in STEM and have them identify their top three careers.
- Job Title
- Job Description (What do they do?)
- Education Required
- Salary Range
- Demand (what is the job outlook for the next 5 years?)
- Why did this career interest you?

After the students have finished, have them share what they found either as a whole class or in small groups.
Engineering Challenge: Designing a Launcher and Catcher

About the Activity

A theme that stands out at the end of the film is the idea of not giving up. Even if you fail, try again! The number one rule in Science and Engineering is to never give up. This activity will challenge students to build two separate devices: a device that can launch a ping-pong ball, and another device that can catch the ball. However, both devices are to be created out of obscure materials. The goal of the activity is to demonstrate the engineering design process, and more importantly, demonstrate the success that comes with trying something again after failing the first time.

Set-up

For this activity, you will be splitting up the students into groups of 4. If the class size doesn’t work well with groups of 4, it is better to have groups of 5 than it is to have groups of 3.

Before class, you will need to prep two supply bags for each group. This activity will be run TWICE, so each group will need four bags total. Bag 1 will have the materials for the launcher and bag 2 will have the materials for the catcher. Below is a table that breaks down what goes in each bag:

<table>
<thead>
<tr>
<th>Bag 1 (Launcher)</th>
<th>Bag 2 (Catcher)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Coffee Stirrers</td>
<td>8 straws</td>
</tr>
<tr>
<td>1 piece of computer paper</td>
<td>4 index cards</td>
</tr>
<tr>
<td>1 paper cup (any size will work)</td>
<td>1 envelope</td>
</tr>
<tr>
<td>6 straws</td>
<td>4 paper clips</td>
</tr>
<tr>
<td>2 pipe cleaners</td>
<td>1 piece of foil</td>
</tr>
<tr>
<td>6 craft sticks</td>
<td>2 plastic forks</td>
</tr>
<tr>
<td>2 balloons</td>
<td>1 brown lunch bag</td>
</tr>
<tr>
<td>4 rubber bands</td>
<td></td>
</tr>
<tr>
<td>10 Mailing Labels (1 foot of masking tape will work. Leave outside of the bag if using masking tape)</td>
<td></td>
</tr>
</tbody>
</table>

In addition to these supplies, each team will need ping-pong balls. The quantity of balls doesn’t matter as long as each team has the same amount. 3 to 4 balls per team works well.

Lastly, you will need to tape the launch area for each team. To tape the launch area, you will need two pieces of masking tape, about 6 inches long. You will put the tape on the students’ work area such that the tape pieces are parallel to each other and exactly 2 feet apart. The launch area can be on the floor or on a table.
Pre-Challenge Discussion

Before starting the challenge, have a discussion with your students about the Engineering Design Process. There are plenty of infographics online to aid in this discussion. You can also use the following questions to guide the discussion:

- What is the Engineering Design Process?
- When do you think the Engineering Design Process is used?
- What are the 5 steps of the Engineering Design Process?
- The Engineering Design Process is a continuous cycle that never ends. Why do you think the cycle never ends?

As you walk through the next section, it is encouraged that you remind students of the Engineering Design Process.

Part 1 – Introduction to the Engineering Design Process

Once the students have a better understanding of the Engineering Design Process, you can then introduce the challenge.

The Challenge – Your task is to work in groups of 4 to build two devices. The first device must launch a Ping-Pong ball at least 2 feet forward, and the second device must catch the ball after it has been launched.

The materials that you can use to make the launcher are:

- 2 Coffee Stirrers
- 1 piece of paper
- 1 paper cup
- 6 straws
- 10 mailing labels (or 1 foot of masking tape)
- 2 pipe cleaners
- 6 craft sticks
- 2 balloons
- 4 rubber bands

The materials that you can use to make the catcher:

- 8 straws
- 4 index cards
- 1 envelope
- 4 paper clips
- 1 piece of foil
- 2 plastic forks
- 1 brown lunch bag

The challenge will be broken into 3 sections:

- Section 1: Plan. Students will have 1 minute to plan out their designs. They may NOT open the supply bags or touch their materials.
- Section 2: Build. Students will have 3 minutes to build their designs. Remember, the supplies allocated for the launcher can only be used for the launcher and the supplies allocated for the catcher may only be used for the catcher.
- Section 3: Test. Students will have 2 minutes to test and score their devices. For each ping-pong ball that is successfully launched the team will be given 2 points. For each ping-pong ball that is successfully caught, the team will be given 2 points. A ping-pong ball is considered successfully launched if the device build is able to toss the ball across the launch area (the two parallel tape lines). A ball is considered successfully caught if the ping pong ball can land in the catching device. Ping-pong balls that touch the table or are touched by the students will not be considered as successfully caught. Students are welcome to slide their catching device on the table to catch the ball, as long as the catcher remains on the table and the device stays out of the taped launch area.

At the end of part 1, have students record their final scores. They will need them at the very end of the activity.

Part 2 – Improve

Chances are things did not go well in the first round. Perfect! The final step of the Engineering Design Process is to improve! Before you re-start the challenge have the students go through two sets of discussions: one discussion with their group and one as an entire class.

Give the students no more than 5 minutes to discuss as a group what went well and what didn't go well. After time is up, discuss the following questions with the whole class. You are more than welcome to add or change questions to meet the needs of your class.

- Can each group give me one thing that went well?
- Does anyone want to share something that didn’t go well?
- How did each group design their launchers?
- How would you define the word “launcher”?
 - Is a sling shot a launcher? Is a catapult a launcher? Are there other examples?

Once the discussion is done, tell the class that they will be repeating the challenge, except this time they will be given 3 minutes to plan and 5 minutes to build. Give the students a fresh set of supplies and repeat the challenge.
Post-Activity Discussion / Reflection

Have a discussion with your class about how the activity went. Feel free to use the following questions as a guide. Discussions can happen in their groups, as a class, or can be a take-home writing assignment.

- What did you learn about the Engineering Design Process?
- What challenges did you face during the first round of the activity?
- How did you overcome any challenges?
- Were you successful in any modifications that you made to your design? If so, how do you know?
- During the activity, did you have to change the way you thought about the words, “launcher” and “catcher”? If so, how did you change your thinking and how did it help you?
- Engineers are often on a tight budget when creating the latest technology. In this activity, your budget was the materials that you got to use. If you weren't given a budget (i.e., you could use any material that you wanted) how would you design your launcher and catcher? Be creative, you have an unlimited budget! You can either describe your design or draw it out and label the materials.
Introduction to Coding: Coding a Human

About the Activity

In the film *Zero Gravity*, students were coding satellites in the international space station. This activity is meant to give an introduction to coding without the use of technology. This type of coding activity is typically referred to as “unplugged” since computers or technology will not be used. In this activity, students will be writing a set of directions (or code) on paper for a person (also referred to as “the robot”) to follow to complete a task. This activity is commonly used as an introduction to coding across all grade and skill levels. This activity can be modified to meet the needs of your class.

Background / Tips for Modification

In this activity, students will be giving “a robot” a set of directions to complete a task. The task that the robot completes can be changed to meet the skill level of your class. The activity as it is described in this document is geared towards 6th grade students with no coding experience. Alternate tasks that change the difficulty level are listed at the end of this section.

In this activity, the robot is a basic model, so the robot is not equipped with sensors or artificial intelligence (AI) of any kind. This is a fun way of saying that whoever is acting as the robot must complete the directions exactly as they are written! For example, if the direction is to “walk forward”, the robot should walk forward with no end until they are told to stop, or they bump into an object. Similarly, if the robot is told to “Walk forward 5” the robot can decide what unit to attach to the number 5. It can be 5 small steps, 5 large steps, 5 hops, etc. The purpose is to have the students be as specific as possible.

As mentioned above, the difficulty of this activity can be modified by changing the task that the robot needs to complete. The difficulty can also be modified by how specific the instructions need to be. For example, a very specific direction could be “rotate shoulder joint 90 degrees in the clockwise direction” or a less specific direction could be “lift arm 90 degrees forward”. Below is a list of possible tasks that you can have your students code:

- Walk through an obstacle course to pick up a water bottle.
- Pick up a pencil and write “Hi!” on a piece of paper.
- Perform a viral TikTok dance. “The Robot” dance will also work.
- Make a sandwich.
- Pick up a book and put it back on the bookshelf. Added challenge to put the book back in alphabetical order.

Ideally, students will write their code in groups of two or three and then give their code to an adult in the room when they are ready. The adult will immediately run the code and students can see...
their errors and fix them to try again. If there is only one teacher in the room, all groups can submit their code at the end of an allotted amount of time and the teacher will go through every group's code one by one and return the code to the groups at the end.

This activity can be repeated multiple times as a fun game or as a small coding competition amongst teams.

Directions

Choose a task and a level specificity that best meets your students' needs. This document will cover the task of walking through an obstacle course to pick up a water bottle with basic directions and will assume only one adult present in the classroom. Remember this activity can be modified to fit your classroom using the suggestions in the previous section.

Set up the task

We will need an obstacle course for the robot to walk through. Place a Post-it Note on the ground to mark the starting point for the robot. Place a water bottle on a table some distance away from the starting point. Finally, set out chairs as the obstacles for the robot.

Introducing the activity

Tell the students that they will be writing code to complete a task. Before you give them any specifics on what or who they are coding, have a quick discussion or recap on what they know about coding. If you wish to revisit the Engineering Design Process from the previous activity this is a great time to revisit it!

After the discussion, tell the students they will be coding you, “the robot”. Explain to the students that you are a robot with no sensors or AI and that you will follow all directions exactly as they are written. Let them know that if you run into an obstacle, you will be forced to restart, and they need to modify their code. Set the expectation on how specific they need to be and allow time to have them ask questions of their own. Finally, demonstrate the components of the obstacle course and break the students up into their groups.

Once students are in their groups, give them no more than 10 minutes to write their code. Students are welcome to walk through the obstacle course to figure out the number of steps needed. When time is up, students should have their code “uploaded to the robot” (i.e., they should turn in their directions to the teacher).
Running the Code

Once you have the code from all the groups, run through each group’s code. Remember to execute the code exactly as it is written! If you run into an obstacle, note the line that made you run into an object and have the group change their code.

Mid-Activity Discussion and Returning the Code

Chances are, no one’s code was perfect the first time around. Before returning the code to the groups, have a class discussion on what they saw from their code and the code of the other groups. Feel free to use the following questions to guide the discussion:

- What prevented your code from being successful? How can you change it?
- (Assuming no one’s code was perfect) What team made it the farthest in the obstacle course? What route did they take?
- Is there more than one route that you can take to get through the obstacle course?
- Are there ways that you can optimize your code or make it easier for the robot to get through the course?

After the discussion, hand the papers back to the students. If you are revisiting the Engineering Design Process, this is a great time to remind students that they have completed the cycle once, and they are about to complete it again. Have them ask themselves what the problem with their code is or how they can improve their code.

Have the students fix their code and allow them to re-submit their code as many times as it takes for them to complete the task, or as many times as time allows. If groups finish well before the others, have the finished groups try to optimize their code. Specifically, challenge them to re-create their code, but see if they can shorten the number of steps. Most times students will turn the robot in increments of 90 degrees. Will turning the robot differently change how it can get through the course?

Wrap up Discussion

When all the groups have finished their code, or when the allotted time is up, end the session with a brief discussion. Feel free to use the following questions to guide the discussion:

- Did anyone have the best possible code on the first try?
- How many times did your team need to go through the Engineering Design Process? I.e., how many times did your team have to re-try writing the code?
- Did the students from Zero Gravity have to fix their code, or was it perfect the first time?
Applications of Coding: Coding a Video Game in Scratch/mBlock

About the Activity

In the film, students were tasked with coding satellites in the international space station. While they were testing their code, they ran a simulation to see how their code affected the satellite. We might not be able to code satellites in a simulation, but we can still do something almost as cool! In this activity, we will be coding a basic jumping video game. Students will code the same game and improve upon it to create something to their liking.

Set-up

In this activity, to make our video game, we will need to have access to mBlock or Scratch. Both platforms are widely available online. It is up to you and your school’s IT department which platform you would like to use. Both platforms look and operate the same. They both can be used via web browser, or the program can be downloaded onto the computer for offline programming. The link to each website can be found below:

- Click here to be directed to mBlock’s main website. You can find the downloadable PC version here.
- Click here to be directed to Scratch’s main website. You can find the downloadable version here.

The activity as it is written in this document, and in all supporting documents, was created using mBlock, but can be completed using either platform. As stated above, both platforms look and operate the same.

Each student will need access to a computer that has either mBlock or Scratch.

Directions

Let the students know that they will be coding their own video game! Let them know what platform they will be coding on.

Pre-coding discussion

To better introduce the game that they will be making, open Google Chrome, and temporarily turn off your internet. Once your internet is off, try to access any website, it could just be your school’s main website. Upon pressing enter to your desired website, you should be greeted with the following image:
Press the up arrow on your keyboard to begin the dinosaur jumping game. The video game that we are coding in this activity is identical to this one.

Have a few students come up to play the game, the hope is that one student will make it to at least 900 points. 900 points is achieved by surviving for about 1 minute.

After a few rounds have been played, have an open discussion with the students on how they think the game is coded. Use the following questions to guide the discussion:

- How do you think they coded the dinosaur to jump when the correct key was pressed?
- What happened when you reached 400 points? (Pterodactyls appeared as an obstacle to jump over). How do you think they coded it?
- What happened when you reached 900 points? (The background switched to “nighttime”). How do you think they coded it?
- What happened when the dinosaur touched a cactus? How do you think they coded it?

If the students didn't know how to respond to these questions, that is okay. They will know at the end of the activity!

Let the students know that they will be coding a video game very similar to what they just saw. At this point, open the supporting power point that was included with this curriculum and walk through the slides to have everyone make their own game. At the end of the power point, students should have some time given at the end to make changes to the code.

Post Activity Discussion

To wrap up this activity, revisit the questions that we asked in the beginning and see how the responses changed.

- How do you think they coded the dinosaur to jump when the correct key was pressed?
- What happened when you reached 400 points? (Pterodactyls appeared as an obstacle to jump over). How do you think they coded it?
- What happened when you reached 900 points? (The background switched to “nighttime”). How do you think they coded it?
- What happened when the dinosaur touched a cactus? How do you think they coded it?
Teacher Background for Documentary Analysis/Making Your Own Documentary

This is a two-part activity. Both parts have been designed to be completed after the film viewing, but Part Two could also be done before viewing the film.

The questions provided are designed to get students thinking and talking about the content of the film and what they could include in their own documentary if they were a filmmaker.

Both parts of this activity can be completed by students independently, but students could also work with a partner or in a small group. Part One could also be done as a whole class by splitting up the work so students are not responsible for responding to all the questions, just ones they select or are assigned. Part One can also be completed through general oral discussion alone as opposed to having students record their responses.

In Part One, which *can only be done after the film viewing*, students are asked to respond to a series of questions about the documentary to interrogate the choices the filmmaker made when selecting the subject material and crafting the mood of the film.

In Part Two, which *could either be done before or after the film viewing (but will be more effective after the film viewing)*, students are asked to develop their ideas for their own documentary. As an extension activity, students could develop their ideas into an actual film to submit to the Milwaukee Film Festival for the Milwaukee Youth Show (a showcase of films made by local filmmakers ages 18 and under).
Zero Gravity Documentary Analysis

NAME: ______________________

To tell the story about a middle school teacher and students preparing for a robotics competition, Zero Gravity was planned and organized by the filmmakers just as any other film is. After viewing the film, analyze the choices the filmmakers made to tell the story and convey the message.

<table>
<thead>
<tr>
<th>What’s the Story?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What did the filmmakers want the audience to see and understand about the student robotics competition?</td>
</tr>
<tr>
<td>What is interesting about the robotics competition and the students’ and teacher’s experiences?</td>
</tr>
<tr>
<td>What events did the filmmakers choose to show/focus on?</td>
</tr>
<tr>
<td>What past events from the students’ or teacher’s lives did the filmmakers choose to include?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Who are the Characters?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aside from the main protagonists, what other characters were important to tell this story?</td>
</tr>
<tr>
<td>What role did these other characters have in the film? Comic relief? Informational Stories?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What are the B-Roll Images/Stock Footage?</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Roll footage is things like objects, cityscapes, etc. that help create the atmosphere for a documentary. What sorts of objects or places were utilized to give the viewer a sense of the environment?</td>
</tr>
<tr>
<td>What mood did the B-Roll footage evoke?</td>
</tr>
<tr>
<td>Archival or stock footage is things like news reports or other pre-existing video footage that filmmakers use to help tell their story. What sorts of archival or stock footage did the filmmakers utilize?</td>
</tr>
<tr>
<td>What mood did the archival/stock footage evoke?</td>
</tr>
</tbody>
</table>
Making your own Documentary

Imagine you are creating a documentary about a topic or an individual you know very well. Create a treatment for your envisioned film. A treatment is a short explanation of your film’s story, characters, and major events.

<table>
<thead>
<tr>
<th>What is my Documentary’s Narrative?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What do you want your audience to see/understand about the person or topic your documentary focuses on?</td>
</tr>
<tr>
<td>What is interesting about the person’s life or the topic?</td>
</tr>
<tr>
<td>What events do you want to show?</td>
</tr>
<tr>
<td>What past events do you want this person to discuss or what history do you want to provide?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Who are the Characters in my Documentary?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aside from your main subject, what other characters are important to tell this story?</td>
</tr>
<tr>
<td>What role will these characters have in the film? Comic relief? Informational Stories?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What are the B-Roll Images/Stock Footage for my Documentary?</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Roll footage is things like objects, cityscapes, etc. that help create the atmosphere for a documentary. What sorts of objects or places will you utilize to give your viewer a sense of the environment?</td>
</tr>
<tr>
<td>What mood do you want your B-roll footage to evoke?</td>
</tr>
<tr>
<td>Archival or stock footage is things like news reports or other video footage that already exists of a subject that filmmakers use to help tell their story. What sorts of archival or stock footage could you use in your documentary film?</td>
</tr>
<tr>
<td>What mood do you want your archival/stock footage to evoke?</td>
</tr>
</tbody>
</table>

EXTENSION ACTIVITY: Develop your treatment into an actual film and submit it to the Milwaukee Film Festival. More information can be found at mkefilm.org.
2022 ESSAY CONTEST

For a sixth year, Milwaukee Film is hosting an Essay Contest in conjunction with our Education Screenings. A judging panel will select the best essay and a runner-up from essays submitted in response to each screening's standard, provided essay prompt. Winners and runners-up will receive an award in the form of a certificate and a gift card to a local bookstore. Submissions will be read anonymously, with name and school information removed from each essay prior to distribution to judges. Judges will assess each essay using a rubric informed by the Common Core State Standards for writing appropriate to the grade band into which the writing falls.

Submission Details:

- You may elect to send all of your students’ work or just a selection.
- For each submission, attach a completed and signed release slip (a set of these forms is attached).
- Mail all submissions to:

 Milwaukee Film attn: Essay Contest
 1037 W. McKinley Ave #200
 Milwaukee, WI 53205

- **Submissions must be postmarked by December 31, 2022**
- Teachers of winning entries will be notified by February 28th, 2023 and we will coordinate a date/time to present the award to the student. Due to the anticipated volume, we unfortunately cannot inform all submissions’ teachers.

Essay Prompt—Grades 6-8:

In the film Zero Gravity, the topic of teamwork was discussed several times throughout the film. The film discussed the importance of teamwork and gave a few characteristics of a good team. What characteristics do you think make up a good team? Use personal experiences and examples from the film to support your ideas.

Your essay should be **three to five paragraphs** and include specific examples regarding teamwork and the characteristics of a good team.

☞ **TEACHERS!** Feel free to do preparatory work in your classroom to help students do their best writing on this topic. For example, you might use the film trailer or reflection pieces at the front of this packet to jog students’ memories of the film they saw. After students have completed a first draft, feel free to have them workshop their writing and revise/edit their work accordingly. Submissions may be handwritten or typed, depending on your resources.
MILWAUKEE FILM ESSAY CONTEST RELEASE FORM

Include a completed copy of this slip with each submission for the 2022 Essay Contest. Please type or print legibly.

Student Full Name ___

Teacher Full Name ___

Teacher Email __

Teacher Phone Number __

School Name __

I hereby authorize the above-named child’s writing to be submitted for consideration in the Milwaukee Film 2022 Essay Contest:

Parent/Guardian Signature __ Date ___________________

Parent/Guardian Full Name (printed) ___